

OPTIMAL DESIGN AND OPERATION OF NEXT GENERATION DISTILLATION PROCESSES

Distillation is the most important separation process in the chemical process industry despite being highly energy-intensive. Any attempt to optimize its design and operation may therefore potentially have a significant impact both financially and in terms of environmental impact. The optimization of a distillation system is a Mixed Integer Nonlinear Programming (MINLP) problem, as well as a highly non-convex problem, and finding global optimal solutions is both challenging and time consuming. This webinar will, through a number of industrially relevant examples, highlight strategies for how to set up and solve challenging optimization problems and, in particular, discuss the benefits of systematic considerations for design and operation for advanced distillation processes including dividing wall columns, reactive distillation and hybrid separation systems.

PROGRAM

14:00	Welcome and introduction Prof. Jens-Uwe Repke, Vice-Chair Working Party on Fluid Separations Prof. Boelo Schuur, EFCE Scientific Vice-President, Secretary of the WP on Fluid Separations
14:10	Synthesis of energy efficient distillation processes with and without heat pumps Prof. Rakesh Agrawal, Purdue University - USA
14:40	Towards systematic design of distillation-based separation processes for non-ideal and azeotropic mixtures Prof. Mirko Skiborowski, Technical University Hamburg (TUHH) - Germany
15:10	Optimal design and operation of hybrid reactive dividing wall distillation columns Prof. Eva Sorensen, University College London - UK
15:40	Discussion and conclusion Prof. Jens-Uwe Repke, Vice-Chair Working Party on Fluid Separations

free of charge but mandatory